An infrasound array study of Mount St. Helens

نویسندگان

  • Robin S. Matoza
  • Michael A.H. Hedlin
  • Milton A. Garcés
چکیده

The ongoing activity of Mount St. Helens provides an opportunity to study the infrasonic wavefield produced by an active, silica-rich volcano. In late October 2004, as a pilot experiment for the Acoustic Surveillance for Hazardous Eruptions (ASHE) project, we deployed two infrasound arrays, each co-located with a broadband seismometer and weather station, to continuously record seismo-acoustic signals from Mount St. Helens. The nearest array, Coldwater, was deployed on the northern flank of the volcano, ∼ 13 km from the summit. The second array, Sacajawea, was deployed ∼ 250 km east of the volcano, at a distance where stratospherically ducted acoustic waves may be expected during the winter. This paper presents an overview of the experimental setup, and preliminary results from this unique data set. Eruptions on January 16th 2005 and March 9th 2005 produced strong infrasonic signals. The aseismic January 16th eruption signal lasted ∼ 9.4 min beginning at ∼ 11:20:44 01/16/05 UTC, while the March 9th eruption signal lasted ∼ 52.8 min beginning at ∼ 01:26:17 03/09/05 UTC, with the main steam and ash venting stage probably lasting ∼ 7.2 min. The March 9th signal was an order of magnitude larger than the January 16th signal, and was clearly recorded 250 km east at the Sacajawea array. Infrasonic expressions of long period (LP) seismic events (‘drumbeats’) have also been intermittently observed, and are recorded as acoustic waves mimicking the waveform and temporal sequence of their seismic counterparts. These acoustic observations provide important constraints for source models of long period events and eruptions. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic Imaging with the Mount St. Helens Node Array

The 900 instrument Mount St. Helens nodal array recorded continuous data for approximately two weeks in the summer of 2014 and was deployed contemporaneously with the active source component of the iMUSH experiment (imaging Magma Under St. Helens). Two distinct imaging methodologies are applied to node data 1) reverse time imaging (RTI) is used to automatically detect and locate microseismicity...

متن کامل

Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location ...

متن کامل

Excess Argon within Mineral Concentrates from the New Dacite Lava Dome at Mount St. Helens Volcano.indd

The conventional K-Ar dating method was applied to the 1986 dacite flow from the new lava dome at Mount St. Helens, Washington. Porphyritic dacite which solidified on the surface of the lava dome in 1986 gives a whole rock K-Ar “age” of 0.35±0.05 million years (Ma). Mineral concentrates from the dacite which formed ins 1986 give K-Ar “ages” from 0.34±0.06 Ma (feldspar-glass concentrate) to 2.8±...

متن کامل

Primary succession on Mount St. Helens, with reference to Surtsey

STUDY AREA The 18 May 1980 eruptions of Mount St. Helens formed a complex pattern of new and denuded land (Dale et al. 2005). This extraordinary landscape beckoned irresistibly to ecologists to study reassembly (Fig. 1). This report draws on studies conducted by myself and colleagues since 1980. Methods are in the references. Vegetation structure was monitored in transects of permanent plots: 1...

متن کامل

The mount st. Helens volcanic eruption of 18 may 1980: minimal climatic effect.

An energy-balance numerical climate model was used to simulate the effects of the Mount St. Helens volcanic eruption of 18 May 1980. The resulting surface temperature depression is a maximum of 0.1 degrees C in the winter in the polar region, but is an order of magnitude smaller than the observed natural variability from other effects and will therefore be undetectable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007